博士生导师

网站首页 > 师资队伍 > 博士生导师 > 正文

阎高伟

职称:教授

学历:工学博士

学科:控制科学与工程

研究领域或方向:机器学习与人工智能、过程建模与软测量系统、新能源与储能系统

邮箱:yangaowei@tyut.edu.cn

  • 主讲课程
  • 学术兼职
  • 荣誉与奖励
  • 学术论文
  • 主持项目
  • 授权专利
  • 著作
  • 科研获奖
过程控制系统
计算机控制技术
机器学习与模式识别
过程控制系统专委会委员
获山西省教学成果特等奖1项和一等奖2项
[1].    Liu Yiwen, Yan Gaowei*, Xiao Shuyi, Wang Fang, Li Rong, Pang Yusong. A multi-task model for mill load parameter prediction using physical information and domain adaptation: Validation with laboratory ball mill[J]. Minerals Engineering. 2025, 222: 109148.
[2].    Sun Jianxin, Wang Fang, Yan Gaowei. Physics-guided forecasting method for main steam pressure in thermal power unit[J]. Thermal Science and Engineering Progress. 2025, 60: 103381.
[3].    Wang Yong, Yan Gaowei*, Xiao Shuyi, Ren Mifeng, Cheng Lan, Zhu Zhujun. Day-ahead solar irradiance prediction based on multi-feature perspective clustering[J]. Energy. 2025(320): 135216 .
[4].    Sun Xiaopeng, Zhang Wenjie, Ren Mifeng, Zhu Zhujun, Ya Gaowei. Ultra-short-term prediction of solar irradiance with multiple exogenous variables by fusion of ground-based sky images[J]. Renewable Sustainable Energy. 2025, 17(2): 23501.
[5].    Zhang Yanan, Yan Gaowei*, Xiao Shuyi, Wang Fang, Zhao Guanjia, Ma Suxia. Mechanism- and data-driven based dynamic hybrid modeling for multi-condition processes[J]. Chemometrics and Intelligent Laboratory Systems. 2025, 260: 105353.
[6].    曹力丰,阎高伟*,肖舒怡,董珍柱,董平. 基于域适应物理信息神经网络的时间序列预测方法[J]. 自动化学报. 2025, 51(06): 1329-1346.
[7].    Zhang Yanan, Yan Gaowei*, Ma Suxia, Zhao Guanjia, Liu Zhongyuan, Zhao Guoxiang. Variational Physics Information-Adaptive Continual Learning Hybrid Probabilistic Modeling Method for Dynamic Industrial Processes[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. 2025, 64(39): 19168-19182.
[8].    Liu Hang, Yan Gaowei*, Cao Lifeng, Ma Suxia, Zhao Guanjia, Liu Zhongyuan. Physics-Informed Koopman Networks for Industrial Process Time-Series Prediction[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. 2025, 64(37): 18328-18346.
[9].    Zhang Yanan, Yan Gaowei*, Ma Suxia, Zhao Guanjia, Liu Zhongyuan, Zhao Guoxiang. Variational Physics Information-Adaptive Continual Learning Hybrid Probabilistic Modeling Method for Dynamic Industrial Processes[J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. 2025, 64(39): 19168-19182.
[10].    Liu Yiwen, Yan Gaowei*, Li Rong, Xiao Shuyi, Ren Mifeng, Cheng Lan. Multi-source unsupervised domain adaptive mill load forecasting method based on deep learning and fusion features[J]. Minerals Engineering. 2024, 209: 108650.
[11].    Zhang Tianming, Yan Gaowei*, Li Rong, Xiao Shuyi, Pang Yusong. Multi-mode industrial soft sensor method based on mixture Laplace variational auto-encoder[J]. Measurement. 2024: 114435.
[12].    霍海丹,阎高伟*,程兰,任密蜂,肖舒怡. 基于低秩重构表示的动态回归迁移模型[J]. 控制与决策. 2024, 39(08): 2511-2520.
[13].    Zhao Zhijun, Yan Gaowei*, Ren Mifeng, Cheng Lan, Li Rong, Pang Yusong. Nonlinear dynamic transfer partial least squares for domain adaptive regression[J]. ISA Transactions. 2024, 153: 262-275.
[14].    Zhao Zhijun, Yan Gaowei*, Li Rong, Xiao Shuyi, Wang Fang, Ren Mifeng, Cheng Lan. Instance transfer partial least squares for semi-supervised adaptive soft sensor[J]. Chemometrics and Intelligent Laboratory Systems. 2024, 245: 105062.
[15].    Zhang Yanan, Yan Gaowei*, Zhao Guanjia, Ma Suxia, Liu Zhongyuan, Zhao Guoxiang. A Dynamic Domain Adaptation Regression Method for Multiple Working Conditions Based on Continual Learning[J]. Industrial & Engineering Chemistry Research. 2024, 63(40): 17252-17265.
[16].    霍海丹,阎高伟*,王芳,任密蜂,程兰,李荣. 基于超图正则化的域适应偏最小二乘多工况软测量模型[J]. 控制理论与应用. 2024, 41(03): 396-406.
[17].    Wang Jiahui, Yan Gaowei*, Ren Mifeng, Xu Xinying, Ye Zefu, Zhu Zhujun. Short term photovoltaic power prediction based on transfer learning and considering sequence uncertainty[J]. Journal of Renewable and Sustainable Energy. 2023, 15: 13501.
[18].    Zhang Tianming, Yan Gaowei*, Ren Mifeng, Cheng Lan, Li Rong, Xie Gang. Dynamic transfer soft sensor for concept drift adaptation[J]. Journal of Process Control. 2023, 123: 50-63.
[19].    Zhang Tianming, Yan Gaowei*, Li Rong, Xiao Shuyi, Ren Mifeng, Cheng Lan. An online transfer kernel recursive algorithm for soft sensor modeling with variable working conditions[J]. Control Engineering Practice. 2023, 141: 105726.
[20].    刘溢文,王芳,李荣,房雅灵,阎高伟*. 融合公共特征与注意力机制的精矿品位预测方法[J]. 控制工程. 2023: 1-7.
[21].    黄岩,李浩志,程兰,任密蜂,阎高伟*. 基于流形正则的质量相关的迁移慢特征回归[J]. 控制工程. 2023.
[22].    Wang Fang, Ma Suxia, Yan Gaowei. A PLS-based random forest for NOx emission measurement of power plant[J]. Chemometrics and Intelligent Laboratory Systems. 2023, 240: 104926.
[23].    Zhao Zhijun, Yan Gaowei*, Ren Mifeng, Cheng Lan, Zhu Zhujun, Pang Yusong. Dynamic transfer partial least squares for domain adaptive regression[J]. Journal of Process Control. 2022, 118: 55-68.
[24].    Zhang Zheming, Yan Gaowei*, Qiao Tiezhu, Fang Yaling, Pang Yusong. Multi-source unsupervised soft sensor based on joint distribution alignment and mapping structure preservation[J]. Journal of Process Control. 2022, 109: 44-59.
[25].    韩鹏东,阎高伟*,任密蜂,程兰. 基于迁移子空间学习的偏最小二乘回归软测量方法[J]. 控制与决策. 2022: 1-9.
[26].    Ren Mifeng, Zhang Wen, Chen Junghui, Pengshi, Yan Gaowei. Performance assessment for non-Gaussian systems by minimum entropy control and dynamic data reconciliation[J]. Journal of the Franklin Institute. 2022, 359(8): 3930-3950.
[27].    Cao Jingyang, Qiao Tiezhu, Zhang Haifeng, Yan Gaowei, Huijiedong. Intelligent detection method for seeding timing in sapphire processing[J]. Measurement. 2022, 201(30): 111745.
[28].    Liu Xiangfei, Ren Mifeng, Yang Zhile, Yan Gaowei, Guo Yuanjun, Cheng Lan, Wu Chengke. A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings[J]. Energy. 2022, 259(15): 124857.
[29].    徐志强,王芳,程兰,陈泽华,阎高伟*. 基于工况差异度量的多源即时学习软测量[J]. 控制工程. 2021: 1-6.
[30].    徐志强,任密蜂,程兰,李荣,阎高伟*. 基于时间近邻拉氏正则的多工况软测量回归[J]. 仪器仪表学报. 2021, 42(11): 279-287.
[31].    任超,阎高伟*,程兰,王芳. 基于最大均值差异的多模态过程过渡模态识别方法[J]. 浙江大学学报(工学版). 2021, 55(03): 563-570.
[32].    Ren Mifeng, Chen Junghui, Shi Peng, Yan Gaowei, Cheng Lan. Statistical information based two-layer model predictive control with dynamic economy and control performance for non-Gaussian stochastic process[J]. Journal of the Franklin Institute. 2021, 358(4): 2279-2300.
[33].    睢璐璐,韩东升,程兰,阎高伟*. 基于带惩罚因子椭球定界算法的软测量建模[J]. 控制工程. 2020, 27(01): 28-33.
[34].    杜宇浩,阎高伟*,李荣,王芳. 基于局部线性嵌入的测地线流式核多工况软测量建模方法[J]. 化工学报. 2020, 71(03): 1278-1287.
[35].    Tang Jian, Yan Gaowei, Liu Zhuo, Liu Yefeng, Yu Gang, Sheng Ning. Experimental analysis of wet mill load parameter based on multiple channel mechanical signals under multiple grinding conditions[J]. Minerals Engineering. 2020, 159: 106609.
[36].    来颜博,阎高伟*,程兰,陈泽华. 基于动态独立成分分析和动态主成分分析的测地线流式核无监督回归模型[J]. 上海交通大学学报. 2020, 54(12): 1269-1277.
[37].    支恩玮,任密蜂,程兰,阎高伟*. 基于域适应支持向量回归的磨机负荷软测量[J]. 控制工程. 2020, 27(11): 1867-1872.
[38].    Ruiyun Yang, Tiezhu Qiao, Yusong Pang, Yi Yang, Haitao Zhang, Gaowei Yan. Infrared spectrum analysis method for detection and early warning of longitudinal tear of mine conveyor belt[J]. Measurement. 2020, 165: 107856.
[39].    贺敏,汤健,郭旭琦,阎高伟*. 基于流形正则化域适应随机权神经网络的湿式球磨机负荷参数软测量[J]. 自动化学报. 2019, 45(2): 398-406.
[40].    Yan Gaowei, Jia Songda, Ding Jie, Xu Xinying, Pang Yusong. A time series forecasting based on cloud model similarity measurement[J]. Soft Computing. 2019, 23: 5443-5454.
[41].    Yu Binchao, Qiao Tiezhu, Zhang Haitao, Yan Gaowei. The OCS method of seeding point detection using visible vision for large-diameter sapphire single crystal growth via the Kyropoulos method[J]. Measurement: Journal of the International Measurement Confederation. 2019, 137: 39-48.
[42].    贺敏,支恩玮,程兰,阎高伟*. 基于多工况迁移学习的磨机负荷参数软测量[J]. 控制工程. 2019, 26(11): 1994-1999.
[43].    Cheng Lan, Wang Kai, Ren Mifeng, Yan Gaowei. Adaptive Filter Approach for GPS Multipath Estimation Under Correntropy Criterion in Dynamic Multipath Environment[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING. 2019, 67(22): 5798-5810.
[44].    杜永贵,李思思,阎高伟*,程兰. 基于流形正则化域适应湿式球磨机负荷参数软测量[J]. 化工学报. 2018, 69(3): 1244-1251.
[45].    阎高伟*,贺敏,汤健,韩东升. 基于最大均值差异多源域迁移学习的湿式球磨机负荷参数软测量[J]. 控制与决策. 2018, 33(10): 1795-1800.
[46].    Yu Binchao, Qiao Tiezhu, Zhang Haitao, Yan Gaowei. Dual band infrared detection method based on mid-infrared and long infrared vision for conveyor belts longitudinal tear[J]. Measurement. 2018, 120: 140-149.
[47].    贾松达,庞宇松,阎高伟*. 多任务LS-SVM在时间序列预测中的应用[J]. 计算机工程与应用. 2018, 54(03): 233-237.
[48].    Wen Xiaohong, Liu Huaping, Yan Gaowei, Sun Fuchun. Weakly paired multimodal fusion using multilayer extreme learning machine[J]. Soft Computing. 2018, 22(11): 3533-3544.
[49].    Qiao Tiezhu, Chen Lulu, Pang Yusong, Yan Gaowei. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion[J]. Photonic Sensors. 2018, 8(2): 134-145.
[50].    Li Xinyu, Qiao Tiezhu, Pang Yusong, Zhang Haitao, Yan Gaowei. A new machine vision real-time detection system for liquid impurities based on dynamic morphological characteristic analysis and machine learning[J]. Measurement. 2018, 124: 130-137.
[51].    保罗,郭旭琦,乔铁柱,阎高伟*. 改进LSTM神经网络在磨机负荷参数软测量中的应用[J]. 中国矿山工程. 2017, 46(03): 66-69.
[52].    程瑞辉,庞宇松,乔铁柱,阎高伟*. 基于OBE-PLS软测量的过程自适应建模[J]. 太原理工大学学报. 2017, 48(04): 628-633.
[53].    Qiao Tiezhu, Chen Lulu, Pang Yusong, Yan Gaowei, Miao Changyun. Integrative binocular vision detection method based on infrared and visible light fusion for conveyor belts longitudinal tear[J]. Measurement. 2017, 110: 192-201.
[54].    Yan Gaowei, Ji Shanshan, Xie Gang. Soft sensor for ball mill fill level based on uncertainty reasoning of cloud model[J]. Journal of Intelligent & Fuzzy Systems. 2016, 30(3): 1675-1689.
[55].    Yan Gaowei, Kang Yan, Ren Mifeng. A novel soft sensor model for ball mill level using Deep Belief Network and Support Vector Machine[J]. International Journal of Engineering Systems Modelling and Simulation. 2016, 8(4): 295-306.
[56].    寄珊珊,郭磊,续欣莹,阎高伟*. 基于梅尔频率倒谱系数的球磨机料位软测量[J]. 计算机仿真. 2016, 33(02): 277-280.
[57].    Qiao Tiezhu, Liu Weili, Pang Yusong, Yan Gaowei. Research on visible light and infrared vision real-time detection system for conveyor belt longitudinal tear[J]. IET Science, Measurement & Technology. 2016, 10(6): 577-584.
[58].    阎高伟,龚杏雄,续欣莹,韩晓明. 基于云模型的球磨机料位概念表示与测量模型[J]. 中国电机工程学报. 2014, 34(14): 2281-2288.
[59].    阎高伟,龚杏雄,李国勇. 基于振动信号和云推理的球磨机负荷软测量[J]. 控制与决策. 2014, 29(06): 1109-1114.
[60].    阎高伟,谢刚,谢克明,王红兵. 基于多传感器融合技术的飞灰含碳量测量[J]. 中国电机工程学报. 2006, 26(07): 35-39.
[1].    企业横向科研课题:云边端协同的燃煤机组冷端智慧优化调控,在研,2025-2026,主持.
[2].    企业横向科研课题:基于物理信息神经网络的机组冷端全工况数字孪生建模与优化,在研,2024-2025,主持.
[3].    山西省科技重大专项计划子课题:煤粉锅炉快速变负荷自动化控制协同降碳关键技术研究与示范,在研,2022~2025,主持.
[4].    山西省自然科学研究面上项目:深度调峰工况下基于物理信息神经网络的NOx浓度建模和优化控制技术,在研,2024~2026,主持.
[5].    企业横向科研课题:光伏电站数字孪生智慧模型研究,结题,2023-2024,主持.
[6].    国家自然科学基金面上项目:基于域适应迁移的未知模态下磨矿粒度分布在线软测量和控制方法研究,结题,2020~2023,主持.
[7].    企业横向科研课题:基于地基云图的太阳能光伏发电功率概率预测模型研究,结题,2022-2023,主持.
[8].    山西省重点研发计划项目:面向节能提质的工业磨机磨矿粒度分布智能检测与控制系统检测与控制系统,结题,2019~2022,主持.
[9].    山西省自然科学基金:随机不确定环境下数据驱动的球磨机负荷软测量建模方法研究,结题,2015~2017,主持.
[10].    国家自然科学基金应急管理项目:球磨机料位软测量中高维非线性特征提取与融合,结题,2015~2015,主持.
[11].    山西省煤基重点科技攻关项目子课题:在役火电机组节能监测关键技术开发——基于hadoop大数据的节能分析,结题,2015~2017,主持
[12].    山西省自然科学基金项目:具有认知特性的类人文进化算法研究,结题,2012~2014,主持
[13].    山西省自然科学基金项目:基于人工智能多传感器信息融合的飞灰含碳量在线测量研究,结题,2005~2007,主持
[1]基于多传感器融合技术的滚筒式球磨机料位检测方法,200910073862.6]]
[2]一种少量标定的基于深度信念网络的球磨机料位测量方法,201510837425.2
[3]基于监督等距映射和支持向量回归的球磨机料位测量方法,201510837488.8
[4]一种煤粉锅炉风粉配平系统及方法,201711355214.0
[5]基于次声波和参考点的供热管道泄漏检测系统及方法,201810415336.2
[6]基于热辐射理论的熔融炉熔融物界面位置检测系统及方法,202010057855.3
[7]基于物理信息神经网络的在线多任务磨机负荷预测方法,202410257269.1
[8]高速线性调频信号源电路,200410092448.7
[9]基于次声波和参考点的供热管道泄漏检测系统,201820651741.X
[10]基于数字孪生技术的球磨机排矿粒度控制方法及系统,202311290160.X
(1)《单片机原理与接口技术》第2版. “十一五”国家级高等教育规划教材,电子工业出版社,2011年,参编
(2)《过程控制系统实验教程》,“十一五”国家级高等教育规划教材,清华大学出版社,2011年,参编
(3)《可编程控制器原理与程序设计》第2版,“十一五”国家级高等教育规划教材,电子工业出版社,2010年,参编
(4)《过程控制系统(第3版)》电子工业出版社,2017年,参编
(5)《过程控制系统(第4版)》电子工业出版社,2021年,参编
[1] 激光煤质在线检测技术及设备 山西省科技发明一等奖 2011,第四名。
[2] 线性调频连续波雷达物位计,山西省科技发明二等奖 2008,第二名。