牛俊天
职称:副教授
学历:工学博士
学科:能源与动力工程
研究领域或方向:1. CO2能源资源化利用; 2. 碳基能源(CH4)高效转化
邮箱:juntianniu@163.com
- 主讲课程
- 学术兼职
- 荣誉与奖励
- 学术论文
- 主持项目
本科生课程:《煤的清洁利用与污染防治》;
研究生课程:《超临界燃煤发电技术案例》
研究生课程:《超临界燃煤发电技术案例》
国际学术期刊《Carbon Neutrality》(Springer & 上海交通大学主办)与《DeCarbon》(Elsevier & 重庆大学主办)青年编委;国家自然科学基金评阅专家、教育部硕士论文评阅专家、全国本科毕业论文(设计)抽检评审专家库专家、全国大学生节能减排大赛函评专家、工程热物理学会会员。
(1) 入选2025年斯坦福全球前2%顶尖科学家榜单(2025年);
(2) 太原理工大学优秀硕士学位论文指导教师(2025年);
(3) 山西省优秀硕士学位论文指导教师(2025年);
(4) 期刊《Frontiers in Energy》年度优秀论文(2024年);
(5) 重庆大学优秀博士学位论文(2020年)。
(2) 太原理工大学优秀硕士学位论文指导教师(2025年);
(3) 山西省优秀硕士学位论文指导教师(2025年);
(4) 期刊《Frontiers in Energy》年度优秀论文(2024年);
(5) 重庆大学优秀博士学位论文(2020年)。
(1) 通讯作者, Regulatory study on reaction pathways and rate-determining steps of CO2 hydrogenation to methanol over Cu-based catalysts of various oxide supports [J]. Fuel, 2026, 405: 136664. (SCI)
(2) 通讯作者, Particle size tuning of Ni/CeO2 catalysts and their performance in methane dry reforming reaction [J]. Gas Science and Engineering, 2026, 145: 205790. (SCI)
(3) 通讯作者, Photothermal synergistic empowerment of Ni/Ce1-xZrxO2 catalyst for DRM: Photothermal coupling regulation and product generation mechanism [J]. DeCarbon, 2025, 10: 100131. (EI)
(4) 第一作者, The impact of oxide support on the reaction mechanism of copper-based catalysts for CO2 activation [J]. International Journal of Hydrogen Energy, 2025, 132: 18–31. (SCI)
(5) 通讯作者, Six-membered carbon rings growth in CO2 reforming reactions on different nickel surfaces: A DFT study [J]. Journal of Physics and Chemistry of Solids, 2025, 206: 112869. (SCI)
(6) 第一作者, The impact of support selection and Co loading amount on the catalytic performance for methane combustion[J]. International Journal of Hydrogen Energy, 2024, 89: 1272–1279. (SCI)
(7) 第一作者, The mechanism insight into methane activation on Cu–Ni/ZrO2 surface and formation-removal of surface carbon[J]. International Journal of Hydrogen Energy, 2024, 59: 1399–1408. (SCI)
(8) 第一作者, Mechanism study on carbon atom growth on different Ni facets in CO2 reforming reaction[J]. International Journal of Hydrogen Energy, 2024, 58: 1332–1344. (SCI)
(9) 第一作者, Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study[J]. Frontiers in Energy, 2024, 18: 525–534. (SCI)
(10) 通讯作者, Effect of Cu doping on Ni surface on CO formation pathways during the methane dry reforming reaction[J]. Molecular Catalysis, 2024, 560: 114125. (SCI)
(11) 通讯作者, Understanding the transformation mechanism of carbon species on different Nickle facets in CO2 reforming reaction[J]. Molecular Catalysis, 2024, 564: 114332. (SCI)
(12) 通讯作者, Study on the mechanism of methane activation on Co-based catalysts with variable valence[J]. Chemical Physics Letters, 2024, 857, 141728. (SCI)
(13) 通讯作者, Unraveling the effect of particle size of active metals in Ni/MgO on methane activation and carbon growth mechanism[J]. Physical Chemistry Chemical Physics, 2024, 26: 1255–1266. (SCI)
(14) 第一作者, Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle[J]. International Journal of Hydrogen Energy, 2023, 48: 19486–19493. (SCI)
(15) 第一作者, Understanding the effect of Ni cluster size on methane activation and dehydrogenation[J]. International Journal of Hydrogen Energy, 2023, 48: 10903–10910. (SCI)
(16) 第一作者, Effects of Pd doped Cu surface on CO2 and H2O formation in methane total oxidation[J]. Molecular Catalysis, 2023, 547: 113388. (SCI)
(17) 第一作者, Unraveling the role of absorbed O/OH on methane total oxidation on Cu surface[J]. Chemical Physics Letters, 2023, 819: 140444. (SCI)
(18) 第一作者, Enhanced performance of oxygen vacancies on the CO2 adsorption and activation over different phases of ZrO2[J]. Frontiers in Energy, 2023, 17: 545–554. (SCI)
(19) 通讯作者, Effects of Cu ratios on the C1–C6 growth mechanism on copper–nickel bimetallic surfaces[J]. Physical Chemistry Chemical Physics, 2023, 25: 18322–18331. (SCI)
(20) 第一作者, Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis[J]. International Journal of Hydrogen Energy, 2022, 47: 9183–9200. (SCI, 入选ESI高被引 )
(21) 第一作者, A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C–H activation[J]. Frontiers of Chemical Science and Engineering, 2022, 16: 1485−1492. (SCI)
(22) 通讯作者, Effect of low-nitrogen combustion system with flue gas circulation technology on the performance of NOx emission in waste-to-energy power plant[J]. Chemical Engineering and Processing-Progress Intensification, 2022, 175: 108910. (SCI)
(23) 第一作者, Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming[J]. ACS Catalysis, 2021, 11: 2398−2411. (SCI, 入选ESI高被引 )
(24) 通讯作者, Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: A DFT study[J]. Molecular Catalysis, 2021, 502: 111360. (SCI)
(25) 通讯作者, Comparative DFT study of carbon formation and removal mechanism on Rh modified Ni-based catalyst in the CH4/CO2 reforming[J]. International Journal of Energy Research, 2021, 45: 10100–10111. (SCI)
(26) 第一作者, New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study[J]. Fuel, 2020, 266: 117143. (SCI, 入选ESI高被引 )
(27) 第一作者, Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(111) and Pt(111)[J]. Applied Surface Science, 2020, 513: 145840. (SCI)
(28) 第一作者, Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations[J]. International Journal of Hydrogen Energy, 2020, 45: 30267–30287. (SCI)
(29) 第一作者, Identification of active sites in CO2 activation on MgO supported Ni cluster[J]. International Journal of Hydrogen Energy, 2020, 45: 11108–11115. (SCI)
(30) 通讯作者, Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: From theoretical and experimental studies[J]. Journal of Hazardous Materials, 2020, 397: 122646. (SCI)
(31) 通讯作者, Effect of active site and charge transfer on methane dehydrogenation over different Co doped Ni surfaces by density functional theory[J]. International Journal of Hydrogen Energy, 2020, 45: 31849–31862. (SCI)
(32) 第一作者, Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane[J]. Chemical Engineering Journal, 2019, 377: 119763. (SCI, 入选ESI高被引 )
(33) 第一作者, Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study[J]. Molecular Catalysis, 2017, 434: 206−218. (SCI)
(34) 第一作者, Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling[J]. Applied Surface Science, 2016, 376: 79−90. (SCI)
(35) 第一作者, CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: A density functional theory study[J]. Journal of CO2 Utilization, 2016, 16: 431−441. (SCI)
(36) 第一作者, Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel[J]. Applied Thermal Engineering, 2016, 95: 454−461. (SCI)
(37) 第一作者, Mechanism of methylene oxidation on Pt catalysts: A DFT study[J]. Computational and Theoretical Chemistry, 2015, 1067: 40−47. (SCI)
(2) 通讯作者, Particle size tuning of Ni/CeO2 catalysts and their performance in methane dry reforming reaction [J]. Gas Science and Engineering, 2026, 145: 205790. (SCI)
(3) 通讯作者, Photothermal synergistic empowerment of Ni/Ce1-xZrxO2 catalyst for DRM: Photothermal coupling regulation and product generation mechanism [J]. DeCarbon, 2025, 10: 100131. (EI)
(4) 第一作者, The impact of oxide support on the reaction mechanism of copper-based catalysts for CO2 activation [J]. International Journal of Hydrogen Energy, 2025, 132: 18–31. (SCI)
(5) 通讯作者, Six-membered carbon rings growth in CO2 reforming reactions on different nickel surfaces: A DFT study [J]. Journal of Physics and Chemistry of Solids, 2025, 206: 112869. (SCI)
(6) 第一作者, The impact of support selection and Co loading amount on the catalytic performance for methane combustion[J]. International Journal of Hydrogen Energy, 2024, 89: 1272–1279. (SCI)
(7) 第一作者, The mechanism insight into methane activation on Cu–Ni/ZrO2 surface and formation-removal of surface carbon[J]. International Journal of Hydrogen Energy, 2024, 59: 1399–1408. (SCI)
(8) 第一作者, Mechanism study on carbon atom growth on different Ni facets in CO2 reforming reaction[J]. International Journal of Hydrogen Energy, 2024, 58: 1332–1344. (SCI)
(9) 第一作者, Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study[J]. Frontiers in Energy, 2024, 18: 525–534. (SCI)
(10) 通讯作者, Effect of Cu doping on Ni surface on CO formation pathways during the methane dry reforming reaction[J]. Molecular Catalysis, 2024, 560: 114125. (SCI)
(11) 通讯作者, Understanding the transformation mechanism of carbon species on different Nickle facets in CO2 reforming reaction[J]. Molecular Catalysis, 2024, 564: 114332. (SCI)
(12) 通讯作者, Study on the mechanism of methane activation on Co-based catalysts with variable valence[J]. Chemical Physics Letters, 2024, 857, 141728. (SCI)
(13) 通讯作者, Unraveling the effect of particle size of active metals in Ni/MgO on methane activation and carbon growth mechanism[J]. Physical Chemistry Chemical Physics, 2024, 26: 1255–1266. (SCI)
(14) 第一作者, Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle[J]. International Journal of Hydrogen Energy, 2023, 48: 19486–19493. (SCI)
(15) 第一作者, Understanding the effect of Ni cluster size on methane activation and dehydrogenation[J]. International Journal of Hydrogen Energy, 2023, 48: 10903–10910. (SCI)
(16) 第一作者, Effects of Pd doped Cu surface on CO2 and H2O formation in methane total oxidation[J]. Molecular Catalysis, 2023, 547: 113388. (SCI)
(17) 第一作者, Unraveling the role of absorbed O/OH on methane total oxidation on Cu surface[J]. Chemical Physics Letters, 2023, 819: 140444. (SCI)
(18) 第一作者, Enhanced performance of oxygen vacancies on the CO2 adsorption and activation over different phases of ZrO2[J]. Frontiers in Energy, 2023, 17: 545–554. (SCI)
(19) 通讯作者, Effects of Cu ratios on the C1–C6 growth mechanism on copper–nickel bimetallic surfaces[J]. Physical Chemistry Chemical Physics, 2023, 25: 18322–18331. (SCI)
(20) 第一作者, Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis[J]. International Journal of Hydrogen Energy, 2022, 47: 9183–9200. (SCI, 入选ESI高被引 )
(21) 第一作者, A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C–H activation[J]. Frontiers of Chemical Science and Engineering, 2022, 16: 1485−1492. (SCI)
(22) 通讯作者, Effect of low-nitrogen combustion system with flue gas circulation technology on the performance of NOx emission in waste-to-energy power plant[J]. Chemical Engineering and Processing-Progress Intensification, 2022, 175: 108910. (SCI)
(23) 第一作者, Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming[J]. ACS Catalysis, 2021, 11: 2398−2411. (SCI, 入选ESI高被引 )
(24) 通讯作者, Effect of different doping ratios of Cu on the carbon formation and the elimination on Ni(111) surface: A DFT study[J]. Molecular Catalysis, 2021, 502: 111360. (SCI)
(25) 通讯作者, Comparative DFT study of carbon formation and removal mechanism on Rh modified Ni-based catalyst in the CH4/CO2 reforming[J]. International Journal of Energy Research, 2021, 45: 10100–10111. (SCI)
(26) 第一作者, New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study[J]. Fuel, 2020, 266: 117143. (SCI, 入选ESI高被引 )
(27) 第一作者, Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(111) and Pt(111)[J]. Applied Surface Science, 2020, 513: 145840. (SCI)
(28) 第一作者, Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations[J]. International Journal of Hydrogen Energy, 2020, 45: 30267–30287. (SCI)
(29) 第一作者, Identification of active sites in CO2 activation on MgO supported Ni cluster[J]. International Journal of Hydrogen Energy, 2020, 45: 11108–11115. (SCI)
(30) 通讯作者, Insight into the effect of facet-dependent surface and oxygen vacancies of CeO2 for Hg removal: From theoretical and experimental studies[J]. Journal of Hazardous Materials, 2020, 397: 122646. (SCI)
(31) 通讯作者, Effect of active site and charge transfer on methane dehydrogenation over different Co doped Ni surfaces by density functional theory[J]. International Journal of Hydrogen Energy, 2020, 45: 31849–31862. (SCI)
(32) 第一作者, Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane[J]. Chemical Engineering Journal, 2019, 377: 119763. (SCI, 入选ESI高被引 )
(33) 第一作者, Effect of Pt addition on resistance to carbon formation of Ni catalysts in methane dehydrogenation over Ni-Pt bimetallic surfaces: A density functional theory study[J]. Molecular Catalysis, 2017, 434: 206−218. (SCI)
(34) 第一作者, Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling[J]. Applied Surface Science, 2016, 376: 79−90. (SCI)
(35) 第一作者, CO2 dissociation over PtxNi4-x bimetallic clusters with and without hydrogen sources: A density functional theory study[J]. Journal of CO2 Utilization, 2016, 16: 431−441. (SCI)
(36) 第一作者, Effects of trapezoidal bluff bodies on blow out limit of methane/air combustion in a micro-channel[J]. Applied Thermal Engineering, 2016, 95: 454−461. (SCI)
(37) 第一作者, Mechanism of methylene oxidation on Pt catalysts: A DFT study[J]. Computational and Theoretical Chemistry, 2015, 1067: 40−47. (SCI)
(1) 国家自然科学基金青年项目:表界面调控优化CH4/CO2催化重整反应性能及作用机制研究(52106179),2022−2024;
(2) 山西省应用基础研究计划面上项目:氧-碳循环协同强化CO2重整反应机制研究(202403021221066),2024−2027;
(3) 山西省留学人员科技活动择优资助项目:Cu基CO2加氢合成甲醇反应中MxOy作用机制研究(20230012),2023−2025;
(4) 山西省省筹资金资助回国留学人员科研项目:载体协同活性金属Cu诱变CO2加氢合成甲醇强化机制研究(2023-065),2023−2026;
(5) 山西省应用基础研究计划青年项目:Cu-Ni/ZrO2催化CH4-CO2重整中合金效应及载体作用协同调控反应性能研究(20210302124017),2022−2024;
(6) 低品位能源利用技术及系统教育部重点实验室开放课题研究基金项目:调控颗粒尺寸及界面结构强化甲烷干重整反应性能研究(LLEUTS-202308),2023−2024;
(7) 中国博士后科学基金面上项目(68批):基于金属颗粒尺寸效应对CH4/CO2催化重整反应性能调控研究(2020M683241),2020−2021;
(8) 重庆市自然科学基金面上项目:Ni基催化CH4-CO2重整反应中Rh改性对C–H与C=O活化机制及抗积碳能力调控(cstc2020jcyj-msxm1921),2020−2023;
(9) 重庆市博士后科研特别资助项目:Cu/Co修饰Ni基催化CH4/CO2重整反应机理解析(XmT2019008),2019−2021。
(2) 山西省应用基础研究计划面上项目:氧-碳循环协同强化CO2重整反应机制研究(202403021221066),2024−2027;
(3) 山西省留学人员科技活动择优资助项目:Cu基CO2加氢合成甲醇反应中MxOy作用机制研究(20230012),2023−2025;
(4) 山西省省筹资金资助回国留学人员科研项目:载体协同活性金属Cu诱变CO2加氢合成甲醇强化机制研究(2023-065),2023−2026;
(5) 山西省应用基础研究计划青年项目:Cu-Ni/ZrO2催化CH4-CO2重整中合金效应及载体作用协同调控反应性能研究(20210302124017),2022−2024;
(6) 低品位能源利用技术及系统教育部重点实验室开放课题研究基金项目:调控颗粒尺寸及界面结构强化甲烷干重整反应性能研究(LLEUTS-202308),2023−2024;
(7) 中国博士后科学基金面上项目(68批):基于金属颗粒尺寸效应对CH4/CO2催化重整反应性能调控研究(2020M683241),2020−2021;
(8) 重庆市自然科学基金面上项目:Ni基催化CH4-CO2重整反应中Rh改性对C–H与C=O活化机制及抗积碳能力调控(cstc2020jcyj-msxm1921),2020−2023;
(9) 重庆市博士后科研特别资助项目:Cu/Co修饰Ni基催化CH4/CO2重整反应机理解析(XmT2019008),2019−2021。